

IISB

COMPARISON OF THE OXYGEN CONCENTRATION IN CZOCHRALSKI SILICON CRYSTAL OBTAINED BY A SIMPLE LUMPED-PARAMETER MODEL AND SOPHISTICATED 2D-3D SIMULATIONS

J. Friedrich^{1*}, M. Trempa¹, H. Koch¹, F. Mosel², A. Mühe²

¹ Fraunhofer IISB, Department Materials, Schottkystraße 10, 91058 Erlangen, Germany ² PVA Crystal Growing Sytems GmbH, Im Westpark 10-12, 35435 Wettenberg, Germany

*email: jochen.friedrich@iisb.fraunhofer.de

Motivation

- Numerical modelling is widely used to improve the Czochralski (Cz) crystal growth technology in order to obtain lower oxygen contents in silicon crystals
- Highly precise numerical simulations, e.g. including calculation of turbulent melt flow,
 typically take several weeks and need high performance computing clusters
- Our approach is to evaluate which information about oxygen concentration in the silicon crystal can be achieved by a simple, time- and cost saving boundary layer model
- The results of this lumped model are compared to that obtained by a highly sophisticated 2D/3D coupled numerical Cz model for 24" crucible hot zone ([1],[2])
- Oxygen content was calculated in dependence on the crucible and crystal rotation for different crystal lengths

Calculation of O concentration

From the balance of the mass fluxes

$$\frac{dn_{m}}{dt} = 0 = J_{c}A_{c} - J_{s}A_{s} - J_{x}A_{x}$$

the pseudo-steady concentration inside the melt volume C_m can be obtained

$$C_m = \frac{1}{1 + \frac{A_S \delta_C}{A_C \delta_S} + \frac{A_X \delta_C}{A_C D} V k_{eff}} C_C$$
 Eq. 5

The equilibrium oxygen concentration at the crucible wall C_c can be assumed to be equal to C_c =2x10¹⁸cm³ and therefore independent from the melt overheating ΔT .

 K_{eff} is the effective segregation coefficient according to Burton Prim Slichter.

The diffusion boundary layers δ_i are replaced by the corresponding momentum boundary layers δ_i using the relation

$$\delta_i = 2.4 * Sc^{-1/3} \delta_i'$$
 with Schmidt number Sc=v/D Eq. 6

The momentum boundary layers δ_s at the free melt surface depends on the Marangoni number Ma:

$$\delta_{s}' = Ma^{-1/3}(r_c - r_x)$$
 with $Ma = \frac{-\left(\frac{\partial \sigma}{\delta T}\right)\Delta T(r_c - r_x)}{\rho v^2}$ Eq. 7

The momentum boundary layers δ_c at the crucible wall scales with the Ekman number Ek for the geostrophic flow regime or with the Grashof number Gr for non rotational flows.

$$\delta_c{'}=3Ek^{1/2}r_c$$
 with $Ek=\frac{v}{2\omega_c r_c{}^2}$ Eq. 8

$$\delta_c' = Gr^{-1/4}r_c$$
 with $Gr = \frac{\beta g \Delta T r_c^3(\frac{h}{r_c})}{v^2}$ Eq. 9

For the calculation of the Ma and Gr numbers a characteristic temperature difference is needed which is assumed to be equal to the maximum melt over heating ΔT . From the 2D/3D simulations for the given 24" hot zone it was found that ΔT depends mainly on the crucible rotation rate ω_c as follows:

$$\Delta T \approx 27K + 2\omega_c \left[\frac{K}{rnm}\right]$$
 Eq.10

With eqs. 5-10 the oxygen concentration C_m can be calculated as follows

$$C_m = \frac{1}{1 + \frac{A_S \delta_{c'}}{A_c \delta_{S'}} + \frac{A_X}{A_C (D/V)} \frac{\delta_{c'}}{Sc^{1/3}}} 2 \times 10^{18} \text{ [atoms/cm}^3] \quad \text{Eq. 11}$$

The boundary layer model

√ari-	Description
able	
C_c	Equilibrium concentration at crucible wall
$\frac{C_c}{C_m}$	Solute concentration in the melt volume
$\overline{C_s}$	Solute concentration at the free melt surface
C_{x}	Solute concentration at the s/l interface
A_c	Contact area between melt and crucible wall
A_s	Area of free melt surface
$\overline{A_x}$	Area of s/l interface
D	Diffusion coefficient
ν	Kinematic viscosity
r_c	Crucible radius
r_{x}	Crystal radius
δ_i	Solute boundary layer thickness
$\vec{n}_{\rm i}$	Molar flow rate
$\overline{J_i}$	Molar flux
ω_i	Angular velocity
V	Pull speed

Oxygen mass fluxes

- Source:
- Dissolution of the SiO2 crucible J_cA_c
- Sinks: Evaporation of SiO at free melt surf
- Evaporation of SiO at free melt surface J_sA_s Incorporation into the crystal J_xA_x
- $\dot{n}_c = J_c A_c$ $J_c = \frac{D}{\delta_c} (C_c C_m)$ Eq. 1 $\dot{n}_s = I_s A_s$ $I_s = \frac{D}{\delta_c} (C_m C_s)$ Eq. 2
- $\dot{n}_s = J_s A_s$ $J_s = \frac{D}{\delta_s} (C_m C_s)$ Eq. 2 $\dot{n}_x = k_{eff} V C_m A_x$

Comparison to 2D/3D simulations

Oxygen concentration in silicon crystal in dependence on crucible rotation ω_c for constant crystal rotation ω_x

- Qualitative agreement between lumped model and 2D/3D simulations using Ek number (eq.8) in the lump-model:
- The increasing oxygen trend becomes visible (decreasing δ_c at the crucible wall with increasing ω_c , resulting in increasing J_c)
- Oxygen content in silicon crystal in dependence on crystal rotation ω_x for constant crucible rotation ω_c

• No matching to 2D/3D model if Gr number is used for calculation of δ_c

- Slight increase of the oxygen concentration with increasing crystal rotation in the 2D-3D simulation is not reproduced by the boundary layer model
- Complex flow structure itself is contributing much to the real oxygen transport

Conclusion

- The presented simple lumped-model can be used for rough estimation of oxygen concentration in Cz-crystals, e.g. in dependence of ingot length or crucible rotation, which make it interesting for beginners in crystal growth
- However, if high precise analysis of oxygen distribution in crystal and melt is required the lumped model hits the wall and the complex and time consuming 2D/3D simulations are indispensable

This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract no. 0324357A.

