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ABSTRACT: In the present work a simple boundary layer model for the oxygen transport during Cz silicon crystal 
growth is revisited and extended by introducing classical scaling laws for the thicknesses of the different boundary 
layers at the crucible wall, at the free melt surface and at the solid-liquid interface. This lumped model is used to 
calculate the influence of crystal and crucible rotation on the oxygen transport during Cz growth of 100kg heavy silicon 
crystals with 210mm diameter in a 24” hot zone geometry. The results of this reduced order model are compared to 
results from sophisticated, coupled 2D-3D, global numerical simulations of the whole Cz puller. It is found that at a 
first glance the accuracy of the boundary layer model can be sufficient for certain coarse case studies. However, the 
boundary layer model hits quickly the wall, when a precise analysis of the oxygen transport is required. The root cause 
is believed to be the complex flow structure, which results from the combination of crystal and crucible rotation in the 
vicinity of the solid-liquid interface. For an accurate analysis of oxygen transport sophisticated simulations are 
indispensable. 
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1 INTRODUCTION 
 

Numerical modeling has become an essential tool for 
optimization and further development of the Cz process of 
Si mono-crystals for photovoltaic applications with 
respect to low oxygen concentrations. This is particularly 
true for large diameter growth processes as respective 
growth experiments are very expensive. This precise 
modeling approach is typically achieved by a combination 
of a global, quasi-stationary, axisymmetric model of the 
whole Cz puller with a local three-dimensional, time-
dependent model of the melt-crystal-crucible region. 
Thereby, the usage of Large Eddy Simulation (LES) 
turbulence model is well established [1-9]. 

However, such numerical calculations, giving 
precisely high-fidelity spatiotemporal profiles of 
important process parameters such as oxygen distribution, 
temperature distribution, and flow profiles, take typically 
several weeks on a high performance cluster to complete. 
To get a quick estimation on the influence of process 
parameters on the crystal properties with reasonable 
accuracy, a reduced-order model would be desired where 
results can be obtained more or less within real time. Such 
lumped parameter model would also allow understanding 
easier the phenomena e.g. occurring in the melt, if the main 
physical mechanisms are considered. 

Such reduced order models were typically developed 
in the 1970ies and 1980ies when numerical simulation of 
the Cz process was in an infancy stage. One example is the 
boundary layer model for the oxygen transport published 
by Carlberg et al. [10] and Hoshikawa et al. [11]. With 
increasing accuracy of numerical simulations these 
reduced-order models have slided into obscurity. 
Therefore, it is unclear whether lumped-parameter models 
are able to predict the influence of different process 
parameter on the oxygen transport for large diameter Cz 
silicon crystal growth with almost the same accuracy than 
highly sophisticated, time consuming 2D-3D simulations. 

Therefore, in this work we used a further developed 
version of the boundary layer model of [10, 11] to 
calculate the influence of crystal and crucible rotation on 
the oxygen transport. The results of this reduced-order 
model will be compared to results obtained by coupled 2D-
3D simulations. 

 

2 COUPLED 2D-3D NUMERICAL SIMULATIONS 
 

We performed coupled 2D-3D simulations of the heat 
and oxygen transport during growth of Si crystals with 
210mm diameter and a weight of 190kg in a 24” (diameter 
of the silica crucible) hot zone. In the 2D-3D model the 
convective heat and oxygen transfer are computed by a 
time-dependent 3D-LES model [5, 6]. Temperature, melt 
velocities and oxygen concentration are averaged 
azimuthally and in time, and a turbulent heat flux is 
calculated form the observed fluctuations of temperature 
and velocity. These average values plus the turbulent heat 
fluxes are then imported into a Reynolds averaged form of 
the temperature equation inside the 2D-model, in which 
the temperature field as well as the SiO evaporated from 
the melt surface in the whole Cz puller geometry is 
calculated. The details of the 2D-3D model can be found 
in [5, 6, 12]. The 2D-3D model was already validated by 
comparison to data from Direct Numerical Simulation as 
well as by comparison to experimental data with respect to 
the shape of the solid-liquid interface and oxygen 
distribution in large diameter Si Cz crystals [5, 6]. 
 
 
3 THE REDUCED-ORDER MODEL 
 

Our approach in developing a reduced-order model 
begins with the assumption of a well-mixed melt region, 
thus eliminating spatial variation of dissolved oxygen 
from the crucible. Due to strong flows from the 
combination of Rayleigh-Bernard convection with 
azimuthal crystal and/or crucible rotation, adequate 
mixing from turbulence is assumed. Fluxes of oxygen in 
and out are estimated as simple linear Fickian diffusion 
across boundary layers of defined width as originally 
proposed by [10, 11] (see Figure 1). 

The basic variables of interest are defined in Table 1. 
In general, subscripts of c, s, m, and x will refer to crucible, 
free melt surface, melt volume, and crystal, respectively. 
The material properties of silicon used in the present work 
can be found in [5]. 
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Figure 1: Cartoon of basic mass flows. 
 

Vari-
able 

Description 

Cc Equilibrium concentration at crucible wall 
Cm Solute concentration in the melt volume 
Cs Solute concentration at the free melt surface 
Cx Solute concentration at the s/l interface 
Ac Contact area between melt and crucible wall 
As Area of free melt surface 
Ax Area of s/l interface 
D Diffusion coefficient 
rc Crucible radius 
rx Crystal radius 
δi Solute boundary layer thickness 
ṅ i Molar flow rate 
Ji Molar flux 
ωi Angular velocity 

Table 1: Basic variables of the boundary layer model. In 
general, subscripts of c, s, m, and x will refer to crucible, 
free melt surface, melt volume, and crystal, respectively. 
 
3.1 Mass fluxes Ji at crucible wall, free surface and 
solid/liquid interface 

We define the molar oxygen fluxes from the crucible 
into the melt, out of the free melt surface, and into the 
crystal as ṅ c, ṅ s, and ṅ x, respectively. Thus, the flux of 
oxygen into the melt from the crucible wall is given by 

 
 𝑛̇𝑛𝑐𝑐 = 𝐽𝐽𝑐𝑐𝐴𝐴𝑐𝑐    eq. 1  
𝐽𝐽𝑐𝑐 = 𝐷𝐷

𝛿𝛿𝑐𝑐
(𝐶𝐶𝑐𝑐 − 𝐶𝐶𝑚𝑚)    eq. 2 

 
At the melt surface the flux of oxygen from the melt 

into the gas ambient is defined as 
 

 𝑛̇𝑛𝑠𝑠 = 𝐽𝐽𝑠𝑠𝐴𝐴𝑠𝑠    eq. 3 
𝐽𝐽𝑠𝑠 = 𝐷𝐷

𝛿𝛿𝑠𝑠
(𝐶𝐶𝑚𝑚 − 𝐶𝐶𝑠𝑠)    eq. 4 

 
We assume that we have an ideal transport of SiO from 

the melt surface into the ambient gas. Therefore, all SiO 
formed at the surface is immediately removed and the 
oxygen concentration at the melt surface Cs approaches 
zero. This assumption is also used in our 2D-3D model, 
because it has been proven that the interaction of the gas 
flow with the melt flow can be neglected for the given 
puller geometry and process parameters. 

At the solid-liquid interface the flux of oxygen out of 
the melt is given by  

 𝑛̇𝑛𝑥𝑥 = 𝐽𝐽𝑥𝑥𝐴𝐴𝑥𝑥    eq. 5 
 𝐽𝐽𝑥𝑥 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑉𝑉𝐶𝐶𝑚𝑚    eq. 6 

 
Here we use the Burton-Prim-Schlichter (BPS) model 

to derive the effective segregation coefficient keff. 
 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘

𝑘𝑘+(1−𝑘𝑘)exp (−𝑉𝑉𝛿𝛿𝑥𝑥𝐷𝐷 )
   eq. 7 

 
δx is the solute boundary layer at the solid-liquid 

interface, V the pull rate. δx can be approximated by the 
model for a rotating disk, which gives [13]: 

 
𝛿𝛿𝑥𝑥 = 1.6𝐷𝐷1/3𝜐𝜐1/6𝜔𝜔𝑥𝑥−1/2   eq. 8 
 
3.2 Mass balance 

Because of slow growth rates, we assume a pseudo-
steady concentration inside the melt volume. The mass 
balance then becomes: 

 
dnm
dt

= 0 = JcAc − JsAs − JxAx  eq. 9 
 

And solving for Cm gives 
 

𝐶𝐶𝑚𝑚 = 1

1+𝐴𝐴𝑠𝑠𝐴𝐴𝑐𝑐
𝛿𝛿𝑐𝑐
𝛿𝛿𝑠𝑠
+𝐴𝐴𝑥𝑥𝐴𝐴𝑐𝑐

𝛿𝛿𝑐𝑐
𝐷𝐷𝑉𝑉 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝐶𝐶𝑐𝑐   eq. 10 

 
If we neglect the bending of the solid-liquid interface, 

then the areas Ai are all known from the crystal and 
crucible geometry and the initial melt mass. Also the 
equilibrium oxygen concentration at the crucible wall Cc 
is known. Figure 2 shows the temperature dependence of 
the oxygen equilibrium concentration published from 
several authors [14-17]. Most papers within the last ten 
years are using the curve from Togawa et al. [14] as 
boundary condition in their numerical simulations. We 
apply also this curve in our coupled 2D-3D approach as 
well as in our lumped model. However, in the lumped 
model we neglect completely the temperature dependence 
and assume a constant value of Cc=2x1018cm-3. 

 

 
Figure 2: Equilibrium oxygen concentration at the 
crucible wall Cc versus melt overheating ∆T published by 
several authors [14-17]. 
 

A priori, the solute boundary layer thickness at the 
crucible, at the melt surface and at the solid-liquid 
interface are unknown, but can be estimated from transport 
scaling relationships and process parameters for the 
momentum boundary layers. Thereby, the Schmid number 
Sc = (ν/D) is used to approximate the thickness of the 
solutal boundary layer δi from the momentum boundary 
layer δi’ [18] which is marked by a prime further on. 
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𝛿𝛿𝑖𝑖 = 2.4 ∗ 𝑆𝑆𝑆𝑆−1/3𝛿𝛿𝑖𝑖′   eq. 11 
 

To estimate δc’, we turn to an analysis of King et al. 
[19]. They investigated the different flow regimes in 
rotating Ralyeigh-Benard configurations in dependence on 
the Ekman number Ek and Rayleigh number Ra which are 
defined for the present work as follows: 

 
𝐸𝐸𝐸𝐸 = 𝜈𝜈

2𝜔𝜔𝑐𝑐𝑟𝑟𝑐𝑐2
     eq. 12 

𝑅𝑅𝑅𝑅 =
𝛽𝛽𝛽𝛽∆𝑇𝑇𝑟𝑟𝑐𝑐3( ℎ

𝑟𝑟𝑐𝑐
)

𝜅𝜅𝜅𝜅
= 𝐺𝐺𝐺𝐺 ∗ 𝑃𝑃𝑃𝑃   eq. 13 

 
with volumetric expansion coefficient β, melt height 

h, crucible radius rc, crucible rotation ωc, melt overheating 
∆T, kinematic viscosity ν, thermal diffusivity κ, Grashof 
number Gr, and Prandtl number Pr= κ/ ν.  

King et al. [19] found that for geostrophic conditions 
(Ra∙Ek3/2 < 10) the momentum boundary layer thickness 
follows a scaling relationship with the Ekman number Ek: 

 
𝛿𝛿𝑐𝑐′ = 3𝐸𝐸𝐸𝐸1/2𝑟𝑟𝑐𝑐    eq. 14 
 

This criterion for geostrophic flow is fulfilled for the 
present Cz set-up (0.01 < Ra∙Ek3/2 < 0.1), therefore eq. 14 
should be valid. However, to check this assumption we 
used also the alternate estimation for non-rotating 
Rayleigh-Bernard convection [19], which is possible by 
the Grashof number, Gr. 

 
𝛿𝛿𝑐𝑐′ = 𝐺𝐺𝐺𝐺−1/4𝑟𝑟𝑐𝑐    eq. 15 
 

For the free surface, we utilize the analysis of [20]. The 
thickness of momentum boundary layer associated with 
Marangoni flow over the free surface is found to follow 
the following relationship with the Marangoni number Ma. 
The relevant length scale here is the distance between the 
crucible wall and the crystal, or rc − rx. The Marangoni 
number is defined as 

 

𝑀𝑀𝑀𝑀 =
−�𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿
�∆𝑇𝑇(𝑟𝑟𝑐𝑐−𝑟𝑟𝑥𝑥)

𝜌𝜌𝜌𝜌2
    eq. 16 

 
with density ρ, and temperature dependence of surface 

tension 𝜕𝜕𝜕𝜕
𝛿𝛿𝛿𝛿

. Accordingly, the momentum boundary layer 
thickness at the free melt surface becomes: 

 
𝛿𝛿𝑠𝑠′ = 𝑀𝑀𝑀𝑀−1/3(𝑟𝑟𝑐𝑐 − 𝑟𝑟𝑥𝑥)   eq. 17 
 

Finally, we get the following expression for the 
oxygen concentration by using the momentum instead of 
the solute boundary layer thicknesses. 

 
𝐶𝐶𝑚𝑚 = 1

1+𝐴𝐴𝑠𝑠𝐴𝐴𝑐𝑐
𝛿𝛿𝑐𝑐′
𝛿𝛿𝑠𝑠′

+𝐴𝐴𝑥𝑥𝐴𝐴𝑐𝑐
𝛿𝛿𝑐𝑐′

(𝐷𝐷/𝑉𝑉)

2.4 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆𝑆𝑆1/3

𝐶𝐶𝑐𝑐   eq. 18 

 
 
4 RESULTS AND DISCUSSION 
4.1 Influence of melt overheating 
 

In eq. 18 all parameters are known except the melt 
overheating ∆T, which is needed to calculate the Grashof- 
and Marangoni-number. Figure 3 and Figure 4 show the 
dependence of the overheating ∆T on the crucible rotation 
ωc and crystal rotation ωx for different body lengths (resp. 
solidified fractions g), obtained from our 2D-3D 

simulations. As already known from literature [21] the 
overheating increases with increasing crucible rotation, 
because the convective heat transport in the lateral 
direction is suppressed due to the higher Coriolis force for 
higher crucible rotation. The influence of crystal rotation 
is minor.  

 

 
Figure 1: Melt overheating ∆T versus crucible rotation ωc 
for different solidified fractions g and crystal rotations ωx 
obtained from 2D-3D simulations. 
 

 
Figure 4: Melt overheating ∆T versus crystal rotation ωx 
for different solidified fractions g and crucible rotations ωc 
obtained from 2D-3D simulations. 
 
In a first step, let us neglect Jx and consider Jc and Js only. 
For a given crucible rotation the overheating decreases by 
less than 10K with increasing the crystal rotation, which 
means that the momentum boundary layer δs’ increases, 
the term As δc’/ Ac δs’ decreases and therefore, the oxygen 
concentration increases by less than 3% according to the 
lumped model. Therefore, we consider only the 
dependence of the overheating ∆T on the crucible rotation, 
which can be expressed as follows when we apply a linear 
trend line to the data in Figure 3: 
 
Δ𝑇𝑇 ≈ 27𝐾𝐾 + 2𝜔𝜔𝑐𝑐[ 𝐾𝐾

𝑟𝑟𝑟𝑟𝑟𝑟
]   eq. 19 

 
4.2 Importance of mass flux Jx 
 
In a second step, we analyze the importance of the mass 
flux Jx. A priori, it is expected that most of the oxygen 
entering the melt over the crucible wall will evaporate as 
SiO from the melt surface [22], that means that the oxygen 
concentration depends strongly on the contact area Ac 
between melt and crucible and that Jx is small compared to 
Js. The latter is equivalent that the third term in the 
denominator of eq. 18 is negligible. Figure 5 shows indeed 
that the oxygen concentration decreases with increasing 
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body length, because the contact area Ac decreases and 
thus, the denominator of eq. 18 increases. It is also obvious 
that the oxygen concentration will increase by less than 5% 
only when the mass flux Jx is not considered. 
 

 
Figure 5: Normalized oxygen concentration Cm/Cc versus 
body length of the crystal for different crucible rotations 
ωc at crystal rotation ωx=-4rpm calculated by eq. 18 with 
eqs. 14, 17 and 19 w/o consideration of the mass flux Jx. 
 
4.3 Influence of crucible rotation  

In a further step, we compare the results of the 
boundary layer model with coupled 2D-3D simulations for 
varying crucible rotation and constant crystal rotation. In 
the boundary layer model, eq. 19 was used to calculate the 
melt overheating ∆T. Figure 6 shows the oxygen 
concentration in the crystal calculated by the boundary 
layer model and obtained from the 2D-3D simulations. 
The results of the boundary layer model are in qualitative 
agreement to the 2D-3D simulations when the Ekman 
number is used to determine the boundary layer thickness 
at the crucible wall (eq. 14). In this case, the well-known 
increase of oxygen concentration with increasing crucible 
rotation [22] is well represented. The root cause is the 
decreasing boundary layer thickness δc at the crucible wall 
with increasing crucible rotation, which results in an 
increase of the oxygen flux into the melt.  

 
Figure 6: Oxygen concentration versus crucible rotation 
at constant crystal rotation (-12rpm) for different body 
lengths. Full squares represent the results of the 
simulations, open squares the results of the boundary layer 
model using eq. 14, open triangles the results of the 
boundary layer model using eq. 15. 
 
On the other hand, when the boundary layer at the crucible 
wall is calculated by using the Grashof number (eq.15), no 
dependence of the oxygen concentration on the crucible 
rotation is found. This proofs that convection in the silicon 
melt represents a geostrophic flow under these conditions. 
 

4.4 Influence of crystal  rotation 
In a last step, we compare the results of the boundary 

layer model with coupled 2D-3D simulations for constant 
crucible rotation and varying crystal rotation. 

 
Figure 7: Oxygen concentration versus crystal rotation at 
constant crucible rotation (15rpm) for different body 
lengths. Full squares represent the results of the 
simulations, open squares the results of the boundary layer 
model using eq. 14. 
 

From Figure 7 is obvious that the slight increase of the 
oxygen concentration with increasing crystal rotation in 
the 2D-3D simulation is not reproduced by the boundary 
layer model. Obviously, the influence of the crystal 
rotation is underestimated in the boundary layer model. In 
order to check whether this could be caused by the 
assumption of a flat interface in the boundary layer model 
we replaced the ideal area of the flat interface by the real 
area of the curved interface Ax, which we extracted from 
the 2D-3D simulations. In addition, we replaced the 
approximated melt overheating (eq. 19) by the values 
obtained from the simulation. However, there is almost no 
difference between these three cases. Thus, the complex 
flow structure itself is contributing much to the real 
oxygen transport, which is not represented in this very 
simple lumped parameter model. 
 
 
5 CONCLUSIONS 
 

The boundary layer model allows the calculation of the 
oxygen concentration at the touch of a button on a simple 
PC, whereas the coupled 2D-3D simulations take several 
weeks on a PC cluster. The comparison to the 2D-3D 
simulations shows that at a first glance the accuracy of the 
boundary layer model is sufficient for certain coarse case 
studies. Therefore, it can contribute to a quick and 
improved understanding about the oxygen transport during 
silicon Czochralski crystal growth, especially for 
beginners in crystal growth. Extensions of the model to 
take into account magnetic field effects or the influence of 
the interaction of melt and gas flow can be carried out 
easily as already shown in literature. 

However, the boundary layer model hits quickly the 
wall, when a precise analysis of the oxygen transport is 
required. The root cause is believed the complex flow 
structure, which results from the combination of crystal 
and crucible rotation in the vicinity of the solid-liquid 
interface. For a better accuracy, it might be useful to 
consider several melt regions beneath the crystal in the 
model. However, it is assumed that too much data have to 
be extracted from the 2D-3D simulations which serve as 
input parameter for such improved boundary layer model. 
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This contradicts the charm of a lumped model. 
Therefore, only first rough estimations can be made by 

using the boundary model. For more accurate treatments 
coupled 2D-3D simulations of the oxygen transport are 
indispensable. 
 
 
6 ACKNOWLEDGEMENT 
 

Our former colleague Dr. Thomas Jung is highly 
acknowledged for carrying out the 2D-3D simulations. We 
thank also Prof. Jeff J. Derby and Kerry Wang from the 
University of Minnesota for the fruitful discussion about 
the applicability of the lumped model. Research and 
development published in this work were part of the 
CZ3003 project, which is funded partly by the German 
Federal Ministry for Economic Affairs and Energy 
(BMWI) under contract number 0324357A. 
 
 
7 REFERENCES 
[1] I. Yu. Evstratov, V. V. Kalaev, A. I. Zhmakin, Yu. 

N. Makarov, A. G. Abramov, N. G. Ivanov, E. M. 
Smirnov, E. Dornberger, J. Virbulis, E. Tomzig, W. 
von Ammon, Journal of Crystal Growth 230 (2001) 
22-29 

[2] D. P. Lukanin, V. V. Kalaev, Yu. N. Makarov, T. 
Wetzel, J. Virbulis, W. von Ammon, Journal of 
Crystal Growth 266 (2004) 20-27 

[3] D. Smirnov, V.V. Kalaev, Journal of Crystal Growth 
310(12) (2008) 2970-2976 

[4] A. Krauze, N. Jekabsons, A. Muiznieks, A. 
Sabanskis, U. Lacis, Journal of Crystal Growth 312 
(2010) 3225-3234 

[5] T. Jung, J. Seebeck, J. Friedrich, Journal of Crystal 
Growth 368 (2013) 72–80 

[6] J. Friedrich, T. Jung, M. Trempa, C. Reimann, A. 
Denisov, A. Muehe, Journal of Crystal Growth 524 
(2019) 125-168 

[7] J. Zhang, J.-C. Ren, D. Liu, Results in Physics 13 
(2019) 102127 

[8] R. Yokoyama, T. Nakamura, W. Sugimura, T. Ono, 
T. Fujiwara, K. Kakimoto, Journal of Crystal 
Growth 519 (2019) 77–83 

[9] V. Kalaev, Journal of Crystal Growth 532 (2020) 
125413 

[10] T. Carlberg, T. B. King, A. F. Witt, J. Electrochem. 
Soc. 129/1 (1982) 189–193 

[11] K. Hoshikawa, X. Huang, Materials Science and 
Engineering B 72(2–3) (2000) 73-79 

[12] J. Fainberg, D. Vizman, J. Friedrich, G. Mueller, 
Journal of Crystal Growth 303(1) (2007) 124-134 

[13] A. G. Ostrogorsky, G. Müller, Journal of Crystal 
Growth 121(4) (1992) 587-598 

[14] S. Togawa, X. Huang, K. Izunome, K. Terashima, S. 
Kimura, Journal of Crystal Growth 148 (1–2) (1995) 
70-78 

[15] K. Kakimoto, K. Yi, M. Eguchi, Journal of Crystal 
Growth 163 (3) (1996) 238-242 

[16] M. Li, Y. Li, N. Imaishi, T. Tsukada, Journal of 
Crystal Growth 234 (1) (2002) 32-46 

[17] J. C. Chen, Y. Y. Teng, W. T. Wun, C. W. Lu, H. I. 
Chen, C. Y. Chen, C. Y., W. C. Lan, Journal of 
Crystal Growth 318(1) (2011) 318-323 

[18] B. Vartak, A. Yeckel, J. J. Derby, Journal of Crystal 
Growth 283 (2005) 479–489 

[19] E. M. King, S. Stellmach, and B. Buffett, Journal of 

Fluid Mechanics 717 (2013) 449-471 
[20] Y. Okano, A. Hatano, A. Hirata, J. Electrochem. 

Eng. Jpn.22(4) (1989) 385-388 
[21] D. Vizman, O. Gräbner, G. Müller, Journal of 

Crystal Growth 233 (2001) 687–698 
[22] J. Friedrich, W. von Ammon, G. Müller, Czochralski 

Growth of Silicon Crystals, in: Handbook of Crystal 
Growth Vol. II. (Eds. T. Nishinaga, P. Rudolph) 
Elsevier (2015) 45–104 

 

38th European Photovoltaic Solar Energy Conference and Exhibition

351


